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About my project

Project Advisor

• Dr. Mehdi Raessi

• Department of Mechanical Engineering

Project Objective

• To study implicit modeling of surface tension.

• To generate faster and better model that produce no
spurious currents and has larger time step restriction.
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Introduction

• What is interfacial flow?

• What are the applications?
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Modeling of interfacial flow

• To accurately model the interfacial flow is challenging
because:

• The discontinuity of fluid properties (such as density).

• The interfacial boundary condition (surface tension).
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Modeling of surface tension in interfacial flow

Currently there are two main interfacial flow models

• Explicit:
Precise but has high computational cost due to small time
step restriction.

• Implicit:
Lower computational cost than explicit due to higher
time-step restriction.
Draw backs: appearing of nonphysical velocities (spurious
current)
Common flow solver: Continuum surface force (CSF)
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Method used

CSF method

• The implicit model studied in this project is based on
Continuum Surface Force method

• This method was first proposed by Brackbill et al. 1991

Drawbacks:

• This method generates unphysical velocities (spurious
currents)

• The spurious current is caused by:

• Imbalance of the surface tension and pressure gradient.

• Error in computing the curvature. (this project)
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(Francois et al. 2007)
The pressure drop across the interface:

∆p = p2 − p1 = σk (1)

σ is the surface tension coefficient
k is the mean curvature

k =
1
RI

+
1
RII

(2)

δ is the delta function represent interface (Raessi et al. 2008)
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My task

Tasks:

• Study the CSF model

• Study the stability of the model (CFL condition) as
time-step increases using different curvature solving
method: Level set (LS) and Advecting Normal

• Compare the results with exact curvature.

Challenges:

• To get used to the code and understand what’s the
function of each parts requires lots of trials errors.

• To manipulate it to do what I want also requires lots of
trials and errors.
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CFL number/ CFL condition

• The Courant-Friedrichs-Lewy condition (CFL condition) is
a necessary condition for convergence while solving partial
differential equations numerically.

CFL =
u.∆t
∆x

≤ C (3)

C= 1
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Level Set method
For a 2D interface between two fluids, depicted in Fig. 1a, the discretized VOF function representing fluid 1

is shown in Fig. 1b. As can be seen, the volume fractions vary sharply from zero to one across the interface.
This discontinuous behavior makes it difficult to accurately evaluate the first and second derivatives of f, which
leads to inaccurate interface normals and curvatures. Smoothing the f field prior to evaluating $f improves the
values [12]. We assess the accuracy of n̂ and j calculated from f in Section 2.3. But first, we briefly present the
LS method, which is known to yield more accurate normals and curvatures.

2.2. Level set method

In the LS method, the interface is represented by a smooth function / – called the LS function; for a
domain X, / is defined [15] as a signed distance to the boundary (interface) oX

j/ð~xÞj ¼ minðj~x$ ~xI jÞ for all ~xI 2 oX ð6Þ

implying that /ð~xÞ ¼ 0 on oX. Choosing / to be positive inside X, we then have

/ð~xÞ ¼
> 0; ~x 2 X

0; ~x 2 oX
< 0; ~x 62 X

8
><

>:
ð7Þ

For the 2D interface depicted in Fig. 1a, the discretized LS function, defined at the center of each cell, is shown
in Fig. 1c.

The unit normal vector and curvature at any point on the interface are calculated from / by

n̂ ¼ r/
jr/j ð8Þ

and

j ¼ $r % r/
jr/j

! "
ð9Þ

Since / is smooth and continuous across the interface (see Fig. 1c), $/ can be calculated accurately.
In the LS method, the motion of the interface is defined by the following advection equation:

o/
ot

þ~u %r/ ¼ 0 ð10Þ

When / is advected, the / = 0 contour moves at the correct interface velocity; however, contours of / 6¼ 0 do
not necessarily remain distance functions. This can result in an irregular / field that in turn leads to problems

Fig. 1. (a) A 2D interface between fluids 1 and 2, (b) the discretized VOF function representing fluid 1 and (c) the level set function
representing distance to the interface.

776 M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797

(Raessi et al. 2007)
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Level Set method
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Advecting Normal method

Note that the order of accuracy of the CLSVOF method used in this work is consistent [27] with the accu-
racy of a similar model developed by Sussman and Puckett [24]. Although n̂ and j calculated from the LS
function are much more accurate than those calculated from the VOF function, neither approach yields con-
verging curvatures.

Finally, it should be noted that these results only apply to the LS function in a CLSVOF context. Other
methods for constructing a distance function (discussed in Section 2.2) may yield converging curvatures, even
with second-order accuracy; however, such methods will fail to exactly conserve mass.

The objective, then, of this work was to devise a method to calculate second-order accurate, or at least con-
verging, curvatures. Such a method is presented next, in which interface normals are advected with the flow,
and curvatures are calculated directly from the advected normals.

3. Advecting normals: a new method for calculating interface normals and curvatures

3.1. Mathematical fundamentals

As reviewed earlier, the evolution of the LS function is governed by Eq. (10)

o/
ot

þ~u "r/ ¼ 0

Defining ~N ¼ r/ as the vector normal to the contours of /, the above equation can be rewritten as

o/
ot

þ~u " ~N ¼ 0 ð14Þ

Taking the gradient of Eq. (14), we obtain

o~N
ot

þr ~u " ~N
! "

¼ 0 ð15Þ

Eq. (15) is the advection equation for normals. In 2D Cartesian coordinates, Eq. (15) results in the following
equations:

oNx

ot
þ o
ox

ðuNx þ vNyÞ ¼ 0 ð16Þ

and

oNy

ot
þ o
oy

ðuNx þ vNyÞ ¼ 0 ð17Þ

Next, consider the following lemma [28]:
Let un ¼~u "r/ be the normal velocity of each level set, and set /ð~x; 0Þ to be the signed distance function. Then

/ remains a signed distance function if and only if run "r/ ¼ 0.
The condition run "r/ ¼ 0 can be also expressed as

rð~u " ~NÞ " ~N ¼ 0 ð18Þ

Note that jr/j ¼j ~N j ¼ 1. Now, from Eq. (15) we obtain

o~N
ot

" ~N þrð~u " ~NÞ " ~N ¼ 0 ð19Þ

or

1

2

o
ot
ðj~N j2Þ þrð~u " ~NÞ " ~N ¼ 0 ð20Þ
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Case study: Static drop

• Static water drop in zero gravity.

• ρ1 = ρ2 = 103Kg/m3

• µ1 = µ2 = 0.05
• g = 0
• Surface tension time-step restriction ∆tST = 0.03

(Raessi et al. 2008)
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What I did

15 / 23



Implicit
modeling

Nguyen

Results - Level Set method vs. Exact Curvature
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Result- Level set at dt = 4, 8dtST
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Result- Level set vs. Exact Curvature for maximum
timestep
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Result- Level set vs Advecting Normal
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Question
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Conclusion

Proved:

• To accurately compute the curvature is crucial and it can
increase the stability of the solution for implicit model
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Future Research

• Continue to study the implicit models.

• Starting with the simulation.
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