
Investigating The Stability of The Balance-force
Continuum Surface Force Model of Surface Tension In

Interfacial Flow

Vinh The Nguyen
University of Massachusetts Dartmouth

Computational Science Training for Undergraduates in the Mathematical Sciences

May 15, 2011

Abstract

Modeling of interfacial flows is very important. However, modeling such flows
is difficult. The fluid properties such as density and viscosity can vary sharply
across the interface. A popular surface tension model, the balance-force continuum
surface force (CSF) model is investigated in this paper. For its stability the model
is coupled with different curvature solving methods such as level set (LS), volume
of fluid (VOF) and advecting normals (AN).

1 Introduction

Interfacial flow is an important field that is vital in many industrial applications including
liquid atomizers, boilers, fuel cells, ink-jet printers, and spray coating and casting processes.
Experimental work on such flows is challenging and costly, therefore creating computerized
model for these flows is also important. However, modeling of such flows requires solving for
the flow field and predicting the shape of fluid interfaces which in term can be very challenging
due to characteristics of the fluids vary significantly at the interface. Furthermore, these
important characteristics are determined essentially by the evolution of fluid interfaces. As
the result, it is important to predict the interfacial geometries accurately. In particular, it
is vital to accurately compute interfacial quantities such as curvature and normal vectors
because they are used to evaluate the surface tension (Raessi et al. 2010).
The error in computing these quantities then leads to the error in computing surface tension
force which is known as the cause of non-physical velocities, commonly known as spurious
or parasitic currents. These velocities is observed to grow with time and they can dominate
other important physical effects such as buoyancy , and so badly affect the simulation results.
The accuracy of the interface curvature is most critical when surface tension is a dominant
force (Raessi et al. 2010).
There are two common approaches to modeling the interface kinematics: interface tracking
(Lagrangian) methods and interface capturing (Eulerian) methods (including level set (LS)
method and volume of fluid (VOF) method).

1

In this paper I focus on using the interface capturing methods to solve for curvature of the
interface. In these methods, the location of an interface is implicitly represented by an scalar
function on an Eulerian mesh. This make the calculation of surface tension challenging but
these methods easily allow the interfaces to merge or rupture (Raessi et al. 2010). The
interface is evolved on a fixed numerical mesh by solving the following advection equation:

δχ

δt
+ ~U.∇χ = 0 (1)

In equation (1) χ is the indicator scalar function (either the LS function or VOF function),

and ~U is the velocity. After solving equation (1), the interface unit normal vector n̂ is
calculated from the spatial derivative of χ as in equation (2), then the curvature is the
divergence of n̂

n̂ =
∇χ
|∇χ| (2)

κ = −∇.n̂ (3)

As can be seen in equation (2) and (3), calculating unit normal vector n̂ and the interface
curvature κ from the VOF and LS function are straightforward, although they are not
necessarily accurate, approaches. There are multiple approaches that yield better accuracy
than LS and VOF and one of them, the advecting normal method, is discussed later in this
paper. Those methods are embedded in the continuum surface force (CSF) model and the
aim of this paper is to study the stability of this model as different methods of calculating
interface curvature are used.
The structure of the paper is as follows. First, the stability of the CSF model is studied
when the interface normals and curvatures calculated from the VOF and LS functions. The
stability results are then compared to that of using exact curvature (limited case). Then,
the AN method is introduced and again, the stability of the model is studied.

2 Mathematical formulations of VOF, LS and AN methods

2.1 VOF method

In the VOF method, the scalar function, f is defined as:

f(~x) =

{
1, if ~x ∈ fluid1

0, if ~x ∈ fluid2
(4)

f is the volume fraction and it used to represent fluid 1 in a fluid 1- fluid 2 system. Using
this method the interface is tracked via this advection equation:

∂f

∂t
+ ~u.∇f = 0 (5)

2

The interface unit normal vector is calculated by the gradient of f and its length ∇f as
following:

n̂ =
∇f
|∇f | (6)

The curvature, κ is then calculated as:

κ = −∇.(∇f|∇f |) (7)

This method can be visualized as in figure 1:

For a 2D interface between two fluids, depicted in Fig. 1a, the discretized VOF function representing fluid 1
is shown in Fig. 1b. As can be seen, the volume fractions vary sharply from zero to one across the interface.
This discontinuous behavior makes it difficult to accurately evaluate the first and second derivatives of f, which
leads to inaccurate interface normals and curvatures. Smoothing the f field prior to evaluating $f improves the
values [12]. We assess the accuracy of n̂ and j calculated from f in Section 2.3. But first, we briefly present the
LS method, which is known to yield more accurate normals and curvatures.

2.2. Level set method

In the LS method, the interface is represented by a smooth function / – called the LS function; for a
domain X, / is defined [15] as a signed distance to the boundary (interface) oX

j/ð~xÞj ¼ minðj~x$ ~xI jÞ for all ~xI 2 oX ð6Þ

implying that /ð~xÞ ¼ 0 on oX. Choosing / to be positive inside X, we then have

/ð~xÞ ¼
> 0; ~x 2 X

0; ~x 2 oX
< 0; ~x 62 X

8
><

>:
ð7Þ

For the 2D interface depicted in Fig. 1a, the discretized LS function, defined at the center of each cell, is shown
in Fig. 1c.

The unit normal vector and curvature at any point on the interface are calculated from / by

n̂ ¼ r/
jr/j ð8Þ

and

j ¼ $r % r/
jr/j

! "
ð9Þ

Since / is smooth and continuous across the interface (see Fig. 1c), $/ can be calculated accurately.
In the LS method, the motion of the interface is defined by the following advection equation:

o/
ot

þ~u %r/ ¼ 0 ð10Þ

When / is advected, the / = 0 contour moves at the correct interface velocity; however, contours of / 6¼ 0 do
not necessarily remain distance functions. This can result in an irregular / field that in turn leads to problems

Fig. 1. (a) A 2D interface between fluids 1 and 2, (b) the discretized VOF function representing fluid 1 and (c) the level set function
representing distance to the interface.

776 M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797

Figure 1: a-VOF 2D interface between fluids 1 and 2, b- the discretize VOF function (Raessi et al. 2006)

For a 2D interface depicted in figure 1a, the discretized VOF function representing fluid
1 and it is observed that the volume fractions vary sharply from zero to one across the
interface. This discontinuous behavior makes it difficult to accurately evaluate the first and
second derivatives of f, which leads to inaccurate interface normals and curvatures (Raessi
et al 2006).

2.2 LS method

In the LS method, the interface is represented by a smooth function φ in a domain Ω, which
represent fluid 1. This smooth function is defined as the distance to the interface, ∂Ω :

|φ(~x)| = min(|~x− ~x1|),∀x1 ∈ ∂Ω (8)

And again this method is still governed by:

∂φ

∂t
+ ~u.∇φ = 0 (9)

From equation (8) we can see that φ(~x) = 0 at when x is at the interface. Then, the smooth
function can be represented as:

φ(~x) =


≥ 0, if ~x ∈ Ω

0, if ~x ∈ interface∂Ω

≤ 0, if ~x /∈ Ω

(10)

3

The unit vector and curvature are calculated the same way as in VOF method:

n̂ =
∇φ
|∇φ| (11)

κ = −∇.(∇φ|∇φ|) (12)

This LS method can be visualized as in figure 2.

For a 2D interface between two fluids, depicted in Fig. 1a, the discretized VOF function representing fluid 1
is shown in Fig. 1b. As can be seen, the volume fractions vary sharply from zero to one across the interface.
This discontinuous behavior makes it difficult to accurately evaluate the first and second derivatives of f, which
leads to inaccurate interface normals and curvatures. Smoothing the f field prior to evaluating $f improves the
values [12]. We assess the accuracy of n̂ and j calculated from f in Section 2.3. But first, we briefly present the
LS method, which is known to yield more accurate normals and curvatures.

2.2. Level set method

In the LS method, the interface is represented by a smooth function / – called the LS function; for a
domain X, / is defined [15] as a signed distance to the boundary (interface) oX

j/ð~xÞj ¼ minðj~x$ ~xI jÞ for all ~xI 2 oX ð6Þ

implying that /ð~xÞ ¼ 0 on oX. Choosing / to be positive inside X, we then have

/ð~xÞ ¼
> 0; ~x 2 X

0; ~x 2 oX
< 0; ~x 62 X

8
><

>:
ð7Þ

For the 2D interface depicted in Fig. 1a, the discretized LS function, defined at the center of each cell, is shown
in Fig. 1c.

The unit normal vector and curvature at any point on the interface are calculated from / by

n̂ ¼ r/
jr/j ð8Þ

and

j ¼ $r % r/
jr/j

! "
ð9Þ

Since / is smooth and continuous across the interface (see Fig. 1c), $/ can be calculated accurately.
In the LS method, the motion of the interface is defined by the following advection equation:

o/
ot

þ~u %r/ ¼ 0 ð10Þ

When / is advected, the / = 0 contour moves at the correct interface velocity; however, contours of / 6¼ 0 do
not necessarily remain distance functions. This can result in an irregular / field that in turn leads to problems

Fig. 1. (a) A 2D interface between fluids 1 and 2, (b) the discretized VOF function representing fluid 1 and (c) the level set function
representing distance to the interface.

776 M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797

Figure 2: The LS method represent the distance to the interface (Raessi et al 2006)

This method is quite accurate when φ = 0, but when φ 6= 0 this smooth function doesn’t
necessarily remain the distance function to interface. This error can result in irregular φ
field that in turn violates conservation of mass.

2.3 Advecting normals

As in previous section we can see that both the VOF and LS is governed by equation (1).
The AN method was introduced by Raessi et al. in 2006. In this method, it still considers
a smooth functionφ as in LS method. An extra term, ~N = ∇φ is also defined as the normal
vector to the contour of φ. Equation (9) is then become:

∂φ

∂t
+ ~u. ~N = 0 (13)

Taking the gradient of equation (13):

∂ ~N

∂t
+∇(~u. ~N) = 0 (14)

The difference in this method is instead of taking gradient of the scalar function, the normal
vector is advected in the governing equation. After ~N is calculated the curvature is:

κ = −∇. ~N (15)

4

2.4 Errors in computing curvature using VOF,LS and AN:

The error in computing the curvature using the VOF method is shown in table 1. The
maximum error l∞ and the average error lI grow linearly when the mesh size increases. This
is a serious drawback of the VOF method.

The errors in curvatures obtained from the VOF function are presented in Table 2. It can be seen that both
l1 and l1 grow linearly when increasing the mesh resolution, jcal: ¼ jexact þOð1=DxÞ. Cummins et al. [12]
reported a similar result, although using a different smoothing kernel. This is a serious drawback of the
VOF function. Contrary to what one would hope, the accuracy of curvatures deteriorates with increasing
mesh resolution. Although converging curvatures calculated from a smoothed VOF function have been
reported (see [12] for details), they become computationally expensive as the resolution increases.

To assess n̂ and j from the LS function in a CLSVOF context, we first initialize the VOF field exactly as
described above, and then calculate / via the reinitialization procedure, where the normals used in the VOF
reconstruction are obtained from the exact /. Note that if we were to use the exact / to calculate n̂ and j, we
would only be assessing the accuracy of the operators used for calculating these quantities; this would not
reflect the discretization errors associated with the reinitialization of /.

The errors associated with the reinitialized /, and the corresponding order of accuracy, are presented in
Table 3. The errors in n̂ and j calculated from / via Eqs. (8) and (9) are presented in Tables 4 and 5, respec-
tively. As the results show, the reinitialized / is second-order accurate, the unit normals are first-order accu-
rate, and the curvatures are zero-order accurate (which implies that a constant error, ranging from 10% to
20%, is always associated with j regardless of the mesh resolution). These errors are not unexpected because
n̂ % r/ and j % r &r/.

Table 1
The errors associated with the unit normal vectors calculated at cell vertices from the VOF function, for a circle of radius 0.15 centered at
(0.5,0.5) in a 1 · 1 domain, at different mesh resolutions

Dx l1 Order l1 Order

1/16 0.1520 0.0694
0.62 0.94

1/32 0.0992 0.0362
'0.14 '0.14

1/64 0.1091 0.0398
0.20 0.04

1/128 0.0951 0.0388
'0.12 '0.02

1/256 0.1030 0.0392
'0.09 0.04

1/512 0.1093 0.0382
0.07 '0.02

1/1024 0.1043 0.0386

Table 2
The errors associated with curvatures calculated from the VOF function, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain,
at different mesh resolutions

Dx l1 Order l1 Order

1/16 1.09 0.49
'0.41 '0.62

1/32 1.44 0.75
'1.32 '0.86

1/64 3.59 1.36
'1.04 '0.91

1/128 7.38 2.57
'1.18 '0.88

1/256 16.75 4.73
'1.03 '0.93

1/512 34.14 8.99
'1.01 '0.99

1/1024 69.00 17.80

778 M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797

Table 1: Error in computing curvature using VOF (Raessi et al. 2006)

The LS method otherwise yield much less error than the VOF. The maximum error is about
one order less in magnitude comparing to that of VOF. The error is shown in table 2.

.

Table 3
The errors associated with the reinitialized LS function / for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain, at different mesh
resolutions

Dx l1 Order l1 Order

1/16 3:03! 10"3 1:14! 10"3

2.27 2.04
1/32 6:30! 10"4 2:78! 10"4

1.71 2.46
1/64 1:93! 10"4 5:06! 10"5

1.86 1.68
1/128 5:33! 10"5 1:58! 10"5

2.03 2.19
1/256 1:31! 10"5 3:46! 10"6

1.88 2.11
1/512 3:54! 10"6 8:00! 10"7

1.82 1.88
1/1024 1:00! 10"6 2:18! 10"7

Table 4
The errors associated with the unit normal vectors calculated at cell vertices from the LS function /, for a circle of radius 0.15 centered at
(0.5,0.5) in a 1 · 1 domain, at different mesh resolutions

Dx l1 Order l1 Order

1/16 6:16! 10"2 1:58! 10"2

1.68 2.38
1/32 1:92! 10"2 3:03! 10"3

0.96 0.35
1/64 9:85! 10"3 2:38! 10"3

0.61 0.83
1/128 6:47! 10"3 1:34! 10"3

0.93 1.03
1/256 3:39! 10"3 6:56! 10"4

1.02 1.17
1/512 1:67! 10"3 2:92! 10"4

0.70 0.99
1/1024 1:03! 10"3 1:48! 10"4

Table 5
The errors associated with curvatures calculated from the LS function /, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain,
at different mesh resolutions

Dx l1 Order l1 Order

1/16 0.5472 0.2963
1.55 1.58

1/32 0.1875 0.0991
"1.79 "0.51

1/64 0.6481 0.1407
0.61 "0.11

1/128 0.4234 0.1518
"0.43 "0.02

1/256 0.5689 0.1537
"0.29 0.34

1/512 0.6963 0.1215
0.11 "0.01

1/1024 0.6453 0.1227

M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797 779

Table 2: Error in computing curvature using LS (Raessi et al. 2006)

The AN method yields even lower error than the two methods above. It is observed in table
3 that the maximum error and the average error drop dramatically as the the mesh size
decreases.

5

4.1. Static circle test

First, we return to the problem of Section 2.3. Table 6 presents the errors associated with j calculated from
~N that are exactly specified. As one would expect, the curvatures are second-order accurate and dramatically
better than the curvatures calculated from either the VOF (Table 2) or LS (Table 5) functions.

4.2. Translation test

Consider the translation of a circle of radius 0.15 centered initially at (0.25,0.5) in a 1 · 1 domain (Fig. 3a);
the velocity field is (u,v) = (1,0). The circle is advected to (0.75,0.5) at different mesh resolutions; the Courant
number is always 0.125. We study cases where n̂ and j are calculated from the VOF and LS functions, and
compare these with results of the ~N method.

Table 7 shows the errors associated with n̂ and j at the end of translation. As Table 7, Panel A shows,
the normals calculated from the VOF function do not converge, and curvature errors grow with mesh
refinement, similar to what was observed in the static circle test in Section 2.3. When the LS function
is used (Table 7, Panel B), n̂ converges and is first-order accurate; however, the l1 errors of j increase
with mesh refinement while, similar to the static circle test, l1 errors remain almost constant. The points
where curvature error is maximum lie on the leading edge of the circle, approximately along !45" diag-
onals. Table 7, Panel C presents errors when the ~N method is used. Both n̂ and j converge with almost
second-order accuracy.

The final location of the circle and the corresponding volume fractions are exactly known, and are used to
calculate the errors associated with the volume fractions at the end of translation (Table 8). For all methods,
the volume fraction errors decrease with mesh refinement; however, when the ~N method is used (Table 8, Panel
C), the errors are smaller and the convergence rate is slightly faster.

4.3. Rotation test

Consider a circle of radius 0.15 centered at (0.75,0.5) in a 1 · 1 domain (Fig. 3b). An angular velocity x = 1
is specified about (0.5,0.5). The circle is advected 2p radians at different mesh resolutions, at a maximum Cou-
rant number of p/50. Again, we study cases where n̂ and j are calculated from the ~N method and from the
VOF and LS functions.

Table 9 shows the errors associated with n̂ and j at the end of one rotation. Again, when the VOF function
is used (Table 9, Panel A), the normals do not converge, and the curvature errors grow with mesh refinement.
The LS function yields normals which are first-order accurate (Table 9, Panel B); the errors associated with j

Table 6
The errors associated with curvatures calculated by the ~N method, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain, at
different mesh resolutions

Dx l1 Order l1 Order

1/16 3:87# 10$1 2:11# 10$2

1.72 1.73
1/32 1:18# 10$1 6:33# 10$2

2.11 2.20
1/64 2:73# 10$2 1:38# 10$2

2.07 1.94
1/128 6:51# 10$3 3:60# 10$3

1.95 2.03
1/256 1:68# 10$3 8:83# 10$4

1.97 2.00
1/512 4:29# 10$4 2:21# 10$4

2.02 2.01
1/1024 1:06# 10$4 5:50# 10$5

784 M. Raessi et al. / Journal of Computational Physics 226 (2007) 774–797

Table 3: Error in computing curvature using AN method (Raessi et al. 2006)

3 Stability Results

The remainder of this paper presents the stability results of tests using the 3 method dis-
cussed in previous sections. The results are then compared to that obtained from using exact
curvature. However, the case of exact curvature is not practical in reality but it can used
as a reference to compared the stability of the methods in computing curvature. The case
study in this paper is the 2D static circle test. This case can be visualized as a floating fluid
1 (water) of density ρ = 1000 in fluid 2 of the same density. The viscosities of the two fluids
are also the same, µ = 0.05, surface tension coefficient, σ = 0.1

3.1 The Courant-Friedrichs-Lewy condition

The problem discussed in this project is a highly non-linear partial differential equation.
To solve this problem also involves solving the Navier-Stokes’ Equation. The stability of
the solutions depends on the Courant-Friedrichs-Lewy (CFL) condition when the problem
is solved numerically. The CFL number is calculated as:

CFL =
u.∆t

∆x
(16)

u is the maximum velocity
∆t is the timestep
∆x is the interval length
For a stable solution, the CFL number has to be less than or equal to one. In this problem we
use CFL number at every timestep as a reference point of the appearing of spurious currents.
Theoretically computing the CFL number is straight forward but to modify a already exist
model to compute the CFL number at very timestep is time consuming.

6

3.2 Timestep restriction

Another key issue associated with modeling interfacial flow using this model is the timestep
restriction. This timestep restriction often becomes more severe than others when surface
tension is the dominant force; by requiring a small timestep, it dramatically increases the
overall computational time. For numerical stability in the CSF method , the timestep size
∆t must satisfy the following condition (Raessi 2008):

∆t ≤ ∆tST =

√
ρ(∆x)3

2πσ
(17)

ρ is the average density of the two fluids.
In my case study the grid size is ∆x = 1

128
= ∆y, σ = 0.1, ρ = 1000. The timestep restriction

is calculated to be ∆t = 0.03. The aiming of this project is to study how far beyond ∆tST

the we can get for timestep size so that the solution remains stable (spurious currents are
minimal).

3.3 Stability using exact curvature

As discuss above the exact curvature results are just used as references to emphasize that
eliminating error in computing curvature could eliminate the spurious current and the solu-
tions would stay stable at larger timestep restriction.
Since this project is a 2D static drop (static circle test) the exact curvature is:

κ =
1

R
(18)

The timestep sizes used in for exact curvature were: 0.5, 2, 4, 8 ∆tST . The timestep size is
increased by a factor of two. As in the result shown in figure 3 and 4, the solution for exact
curvature becomes unstable at 36s when the timestep size is 8∆tST .

7

Implicit
modeling

Nguyen

Results - Level Set method vs. Exact Curvature

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

!4 CFL vs. t for COMPUTED CURVATURE

C
F

L

t (s)

CFL @dt =0.015s

CFL @dt =0.03s

CFL @dt =0.06s

Student Version of MATLAB

• Level set

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7
x 10

!8 CFL vs. t for Exact CURVATURE

C
F

L

t (s)

CFL @dt =0.015s

CFL @dt =0.03s

CFL @dt=0.06s

CFL @dt=0.12s

Student Version of MATLAB

• Exact curvature
The timestep was increase as : ∆t = 0.5, 2, 4∆tST

16 / 23

Figure 3: CFL vs time for exact curvature with dt=0.5, 2, 4 ∆tST

Implicit
modeling

Nguyen

Result- Level set at dt = 4, 8dtST

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70
CFL vs. t for COMPUTED CURVATURE

C
F

L

t (s)

CFL @dt =0.12s

CFL @dt =0.24s

CFL limit=1

Student Version of MATLAB

• Level set dt = 4, 8∆tST

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7 CFL vs. t for Exact CURVATURE

C
F

L

t (s)

CFL @dt =8*delta t
ST

Student Version of MATLAB

• Exact curvature
dt = 8∆tST

17 / 23

Figure 4: CFL vs. time for exact curvature with dt=8∆tST

It is possible that the solution might get unstable even of timestep size smaller 8∆tST . There-
fore, refining the timstep size restriction becomes another important task in this project.
After multiple trial and error I have found that using timestep size of 6.67∆tST the solution
is stable, however, at timestep size of 7∆tST the solution get unstable at 36s. Again in this
project the simulation time is just 90s, so, in order to check if at timestep of 6.67∆tST the

8

solution won’t get unstable anytime after 90, I increased the simulation time to 270s and
still got the CFL number less than one.

Implicit
modeling

Nguyen

Result- Level set vs. Exact Curvature for maximum
timestep

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time s

C
F

L

CFL vs. Time for Computed Curvature

CFL @dt =0.096s

CFL @dt=0.095s

Student Version of MATLAB

• Level set
dt = 3.167, 3.2∆tST

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time s

C
F

L

CFL vs. Time for Exact Curvature

CFL @dt=0.21s=7dtST

CFL@dt = 0.2s=6.67dtST

CFL limit

Student Version of MATLAB

• Exact curvature
dt = 6.67, 7∆tST

18 / 23

Figure 5: CFL vs time for exact curvature with dt=6.67, 7 ∆tST

3.4 Stability using LS to compute curvature

The simulation time for this problem is initially 90s. In this section the LS method is used
to compute the curvature of the drop. The timestep sizes are chosen to be 0.5∆tST , ∆tST ,
2∆tST , 4∆tST . The simulation is top as soon as the CFL number exported to screen is
greater than one.
It is observed in figures 6 and 7 that using LS method to compute curvature, the CSF
solution is still stable when the timestep size is 0.5∆tST , ∆tST , 2∆tST ,4∆tST .
When the timestep size is increased to 4∆tST grows dramatically after 1s. The next task is
to find exactly what the maximum timestep size that can be used above which the solution
is unstable.

Using the same approach as for exact curvature, I have also found that using timestep size

9

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

!4 CFL vs. t using Level Set

C
F

L

t (s)

CFL @dt =0.5dtST

CFL @dt=2dtST

CFL @dt =dtST

Student Version of MATLAB

Figure 6: CFL vs. time for dt = 0.5,1,2 ∆tST

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70
CFL vs. t using Level Set

C
F

L

t (s)

CFL @dt =4dtST

CFL @dt=8dtST

Student Version of MATLAB

Figure 7: CFL vs. time for dt=4,8∆tST

of 3.167∆tST the solution is stable, however, at timestep size of 3.2∆tST the solution get
unstable at 36s. Again, when using timestep size of 3.167∆tST I also increased the simulation
time to 270s to make sure the solution still stable and I still got the CFL number less than
one throughout the whole simulation.

10

Implicit
modeling

Nguyen

Result- Level set vs. Exact Curvature for maximum
timestep

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time s

C
F

L

CFL vs. Time for Computed Curvature

CFL @dt =0.096s

CFL @dt=0.095s

Student Version of MATLAB

• Level set
dt = 3.167, 3.2∆tST

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time s

C
F

L

CFL vs. Time for Exact Curvature

CFL @dt=0.21s=7dtST

CFL@dt = 0.2s=6.67dtST

CFL limit

Student Version of MATLAB

• Exact curvature
dt = 6.67, 7∆tST

18 / 23

Figure 8: CFL vs. time for dt = 3.167, and 3.2 ∆tST

3.5 Stability using VOF to compute curvature

As discussed before, VOF is not a very accurate technique to calculate curvature. The error
in computing curvature is higher than that of LS method and AN method, therefore, one
might thought that the solution might get unstable at smaller timestep size than other more
robust method. However the result I obtained is totally contradicted to that. The plot
in figure 9 shows that the CFL magnitude still stays below one when I applied the same
timestep size at which the LS method gets unstable. The final timestep size that the VOF
method gets unstable is found to exactly 4∆tST . From these results, I could conclude in my
case study the VOF method stays stable at larger timestep restriction than the LS method.
This interesting result could be explained using the definitions of the LS method and the
VOF method. Although the LS method is more accurate in computing curvature than the
VOF method, each layer of the mesh heavily depends on the one another of which small
error could be carried out and magnified throughout the whole simulation. In contrast, the
VOF method is just a volume fraction function and it mainly focus on the interface, so if
there is some error, this error wouldn’t be magnified or or greatly affect the whole solution.

11

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

Time s

C
F

L

CFL vs. Time using VOF method

CFL @dt=0.096s VOF

CFL @dt=0.1s VOF

Student Version of MATLAB

Figure 9: CFL vs time using VOF method to calculate curvature at timestep size 3.2∆tST and 3.33∆tST

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time s

C
F

L

CFL vs. Time using VOF method

CFL @dt=0.12s VOF

Student Version of MATLAB

Figure 10: CFL vs time using VOF method to calculate curvature at timestep size 4∆tST

3.6 Stability using AN to compute curvature

Following every step as in the others method I have found that using AN to computing
curvature the solution got unstable at the timestep size of 3.1.67∆tST which is the smaller
comparing to that of LS method. Also, using AN to compute curvature the solution get

12

Implicit
modeling

Nguyen

Result- Level set vs Advecting Normal

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time s

C
F

L

CFL vs. Time for Exact Curvature

CFL @dt=0.095s AN

CFL @dt=0.096s AN

CFL @dt=0.095s LS

CFL @dt=0.096s LS

Student Version of MATLAB

19 / 23

Figure 11: Comparing LS vs AN’s CFL vs time

unstable quicker than using LS at the same timestep size of 3.2∆tST . The result can be seen
as below in figure 12. This phenomenon is very interesting because as proposed in Raessi et
al. 2006, AN method is more accurate than LS and yet its less stable.
The explaination for this phenomenon is that because the normal vector is advected inside
the PDE, even small error in computing unit normal vector would create large error in surface
tension resulting in large pressure drop arcross the interface (see Apendix). Also in Raessi
et al. 2006, this AN technique is more accurate in a flow problem where the fluid velocity
dominates.

4 Conclusion

Overall, using different methods of calculating curvature yield different stability of the so-
lution. Based on these results I found in this project, the curvature play an important role
in the stability, therefore, the more accurate the curvature is computed, the more stable the
solution is. The more stable the solution in turn increases the timestep restriction which
will then shorten the computational cost.

13

5 Acknowledgement

I would like to thank you Dr. Mehdi Raessi whose encouragement, guidance and support
from the initial to the final level enabled us to develop an understanding of the subject.
Lastly, I offer my best regards Dr. Gottlieb, Dr. Kim and other CSUMS staff members who
supported me in any mean during the completion of the project.

Vinh The Nguyen
University of Massachusetts-Dartmouth
May 15th, 2011

14

References

[1] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M.
W. Williams. ” A balanced-force algorithm for continuous and sharp interfacial surface
tension models within a volume tracking framework.” Journal of Computational
Physics, 213:141–173, 2006

[2] Mehdi Raessi, Javad Mostaghimi, Markus Bussmann ”A volume-of-fluid interfacial flow
solver with advected normals” 2010

[3] Mehdi Raessi ”On modeling surface tension-dominan, large density ratio, two-phase
flows” 2008,

[4] M. Raessi, J. Mostaghimi , M. Bussmann ”Advecting normal vectors: A new method for
calculating interface normals and curvatures when modeling two-phase ows” 2007

15

