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Abstract

We study interactions of intense, ultra-short laser pulseswith atomic systems
in the strong perturbation regime. Laser matter interactions are of current interest
in research in atomric, molecular, and optical physics. In our project, numerical
solutions of the time dependenct Schrodinger equation of atomic systems interact-
ing with a strong laser will be investigated. We will use a numerical method where
the spatial coordinate is discretized on a grid and the temporal evolution is car-
ried out using the Runge-Kutta scheme. We refer to this as thespace-di scretized
Runge-Kutta (SDRK) method. The results of the SDRK method will be compared
to those of other methods such as the split operator approachin terms of effec-
tiveness and stability. The wavefunctions of model systemswill be calculated and
relevant properties such as ionization rates will be studied as a function of laser
intensity and duration. We will also compare such exact numerical solutions with
often used approximations such as the strong field approximation to study their
validity.

Introduction

The Schrodinger Equation: A brief History

By the end of the 19th century, it was becoming quite clear that classical mechanics
failed to explain all observed phenomena in the universe. With blackbody radiation
disrupting our idea of a perfectly continuous physical world, and the wave particle
duality matter discovered by de Broglie, it was time for a newformalism to explain
the behavior of matter on the atomic scale. Using primarily the wave-particle duality
of matter, Erwin Schrodinger set out to define a wavefunction, ψ, which is used to
represent all possible positions a particle can occupy. [2]
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Conditions of the Wavefunction: The Postulates

Erwin Schrodinger postulated the following regarding the wavefunction:

• Postulate 1: A particle may be described by a wavefunction,ψ(~r, t), which is
typically complex, but may be real. i.e.ψ(~r, t) = R(~r, t) + ιI(~r, t), where R
is the real part, and I is the imaginary. A theorem in mathematics proves (rather
tediously) that ifψ(~r.t) is to describe a time dependent process, thenψ(~r.t)
is complex. We will make use of this fact when deriving our Time-dependent
equation.

• Postulate 2: The probability of finding the particle described by the wave equa-
tion at time t in a volume dV, at position~r is given by

Pr(~r, t) = |ψ(~r, t)|2dxdydz

Restraints on the Wavefunction

Our wavefunction must additionally obey the following:

• Continuity: Our wavefunction must be continuous everywhere

• Smoothness: The derivative of our wavefunction must also becontinuous every-
where

• Unitarity:
∫

∞

−∞
|ψ(~r, t)|2dr = 1

A Heuristic Derivation of the Time Dependent Schrodinger Equa-
tion

From our earlier mentioned theorem, we must implement a complex wavefunction that
is both space and time dependent. We assume it is of the simplest form: a plane wave,
of the form

ψ(x, t) = Aeι( p

~
x−E

~
t)

which describes a particle with momentum p and energy E. Taking a first order deriva-
tive with respect to x gives

∂

∂x
ψ(x, t) = Aeι( p

~
x−E

~
t) ∂

∂x
ι(
p

~
x−

E

~
t) = Aeι( p

~
x−E

~
t) ∗

ιp

~
=
ιp

~
ψ(x, t)

taking a second x derivative simply gives

∂2

∂x2
ψ(x, t) =

∂

∂x

ιp

~
ψ(x, t) =

ιp

~

∂

∂x
ψ(x, t) = (

ιp

~
)2ψ(x, t) = −(

p

~
)2ψ

or simply

p2ψ(x, t) = −~
∂2

∂x2
ψx, t
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There is a very important feature in quantum mechanics to take note of here. Momen-
tum is no longer simply a value, but instead an operator, along with its square. The
same can be said of any arbitrary function of x, like a potential, V(x), where

V (x)ψ(x, t) = V (x)ψ(x, t)

So there is no actual calculation required. From classical mechanics, we can express
the net energy of the system (potential and kinetic) as the Hamiltonion,

E = H = T + V =
p2

2m
+ V (x)

Using our notion of operators, we can extend this to a quantummechanical system:

Eψ(x, t) = Ĥψ(x, t) =
p2

2m
ψ(x, t)+V (x)ψ(x, t) = −

~
2

2m

∂2

∂x2
ψ(x, t)+V (x)ψ(x, t)

To get E, we simply need to take a first time derivative of our planewave.

∂

∂t
ψ(x, t) = −

ιE

~
ψ(x, t) =

E

ι~
ψ(x, t)

or

ι~
∂

∂t
ψ(x, t) = Eψ(x, t)

Substituting for E in our energy equation, we get

ι~
∂

∂t
ψ(x, t) = −

~
2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t)

which is the Time Dependent Schrodinger Equation in 1 Dimension [1]. If we wish to
extend this to 3-D, we would have

ι~
∂

∂t
ψ(~r, t) =

−~
2

2m
∇2ψ(~r, t) + V (~r)ψ(~r, t)

The Time Independent Schrodinger Equation

If we make our wavefunction a product of time and space dependent functions, we have

ψ(x, t) = U(x)T (t)

which allows us to arrive at the equations

ĤU(x) = EU(x)

and
T (t) = Ae−ι E

~
t

where E is the eigenvalue of the Hamiltonian operator, and the associated energy of the
particle.
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Numerical Evaluation of the TDSE

We first start by working in the atomic unit system, where m=~ = 1, so our TDSE
becomes

ι
∂

∂t
ψ(x, t) = −

1

2

∂2

∂x2
ψ(x, t)

we can approximate the spatial derivative on the right hand side by discretizing our
space into n space steps, and considering the jth step

∂2

∂x2
ψ(x, t) ∼

ψj−1(t) − 2ψj(t) + ψj+1

h2

where h is the step size, plugging this into the TDSE will result in an ODE with respect
to time

ι
d

dt
ψj = −

1

2

ψj−1(t) − 2ψj(t) + ψj+1

h2
+ Vjψj

Since our wavefunction is describing a time dependent process, we again use our the-
orem to state that our wave function must indeed be complex, then we may split it up
into real and imaginary parts byψj = Rj + ιIj . Substituting this value gives a system
of coupled ordinary differential equations in t

d

dt
Rj = −

1

2

Ij−1 − 2Ij + Ij+1

h2
+ VjIj

and
d

dt
Ij =

1

2

Rj−1 − 2Rj +Rj+1

h2
− VjRj

The Leapfrog Method: A classical example

One area of interest of this project, before attempting to undertake any numerical eval-
uations of the coupled system, was to investigate the effectiveness of the Leapfrog
integration scheme versus forward Euler integration. In order to do so, a classical ex-
ample was used, given the initial position, velocity, and potential, one could use the
leapfrog method through the following three equations.

x1/2 = x0 + v0 ∗
h

2

v1 = v0 + a(x1/2) ∗
h

2

x1 = x1/2 + v1 ∗
h

2
Here it becomes obvious where it gets its name from. It evaluates x at the halfway
mark, then leaps over to evaluate v at the next step, then leaps over again to get x at the
next integer step, and so on..

One particular thing of importance regarding the leapfrog integration scheme is
that it preserves area in phase space, something that forward Euler does not do. What
typically ends up happening as a result of phase space area not being preserved is that
the system will end up gaining energy, which violates conservation laws, as we will see
later.
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Propagation of Time Independent solutions and The Prin-
ciple of Superposition

As we saw earlier, our wavefunction could be broken up into temporal and spatial
components, and their product would yield the solution. Since our spatial wavefuntion
gives us an eigenvalue problem, our solutions to this problem, U(x), will form an
orthonormal basis in a Hilbert space, which is typically infinite dimensional, with a
few exceptions. The principle of superposition states thatany stateψ is the sum of all
possible eigenstates, with proper normalization coefficients. Or rather

|ψ〉 =

∞
∑

n=1

cn|n〉

where|ψ〉 is the state vector, and|n〉 is the nth eigenstate, andc2n is the probability of
our wavefunction being found in that state. If we wish to get the time evolution of our
system, we simply multiply it upon our temporal function to get

|ψ(t)〉 =
∞
∑

n=1

cn|n〉e
−

ιEn
~

t

WhereEn is the eigenvalue corresponding to the nth eigenstate.

1 Leapfrog Method in a Harmonic Potential

To test the effectiveness of the leapfrog method, it was implemented on a well known
potential: the harmonic oscillator. Euler’s Method was also used to compare the solu-
tions, which can be viewed in the following figures. Noticeably, the amplitude in the
Euler solution seems to be increasing with time, which is a result of the inaccuracy of
a first order method like Forward Euler. We can see additionalproblems in Euler that
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Figure 1: Leapfrog Method Solution
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Figure 2: Eulers Method Solution
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we don’t see in higher order schemes like leapfrog in their respective energy plots in
figures 3 and 4. It is apparent that the energy seems to be increasing linearly with time
for the Euler scheme, while remaining constant as it should with leapfrog.
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Figure 3: Leapfrog Method Energy
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Figure 4: Eulers Method Energy

Qualitative analysis of the time evolution of a particle in
a box

Using the principle of superposition, the time evolution ofa particle in a box was
qualitatively analyzed using VPython as the tool for analysis. For a particle in a box of
length L, the nth eigenstate is given by

|n〉 =

√

2

L
sin(

nπ

L
x)

with eigenenergyEn = n2
~
2π2

2mL2 . Plotting the norm squared gave the probability density
function for our particle. The probability density startedoff as a single peak, then
expanded, eventually splitting into 2 peaks of equal height, and then returning to its
original peak, suggesting that the probability of finding a particle at some point in the
box was periodic in time.
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