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‘ Abstract |

Fourier Series approximations are well
known for their spectral convergence of
data reconstructions on smooth and pe-
riodic functions. However, they fail to
produce similar convergence when faced
with discontinuous problems due to pe-
culiar behavior near the discontinuities.
Our work is to remedy this problem by
using a hybrid method. In this method,
polynomial approximation is used near
the discontinuity and Fourier approxima-
tions are used on the other regions. We
present numerical differences between
our methods and other previous methods
applied to similar popular problems.

‘ Introduction |

The goal of the project is to construct ac-
curate point values of an unknown func-
tion f(z) on —1 < z < 1. Given the
first 2N +1 coefficients, the Fourier Partial
Sum

N

Fy(x) = 20 4 Z ap. cos(mkx) + by, sin(mkx)

21 k=1
ap = /_1 f(x) cos(mkx)dx

1
b = /_1 f(x)sin(mkx)dx

Summing up the straight forward Fourier
Series to construct an approximation is a
good accurate reconstruction given that
f(x) is smooth and periodic:

mat < <l f(x) — Fy(a)| < eV

the approximation converges spectrally,
the error decays exponentially. However,
the convergences rate for the approxima-
tion of discontinuous/non-periodic func-
tions from the Fourier coefficients is very
poor, as seen in [1].
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Figure 1: Parts (a) approximation of
f(x) = sin(mx) (b) the error plot, log scale,
of the approximation of f(x) = sin(nx)
(c)approximation of f(x) = x (d) the er-
ror plot, log scale, of the approximation
of f(x) ==

This behavior is known as Gibbs Phe-
nomenon. To obtain the same spec-
tral convergence for discontinuous/non-
periodic functions we aim to remove
Gibbs Phenomenon.

Fourier-Lagrange Hybrid |

We examined that a subinterval [a,b] C
—1,1] is free of the discontinuity and will
not be affected by Gibbs Phenomenon
[1]. To test the idea, we cut-off and dis-
regarded any subinterval containing the
discontinuity and see the error of the re-
construction when the phenomenon was
not present. The results were very nice,
much like in the continuous case. This
new approximation was not on the entire
interval [—1,1] but on a subinterval. We
used polynomial approximation over the
subinterval containing the function’s dis-
continuity. This method is introduce to
eliminate Gibbs Phenomenon in discon-
tinuous function.

(Polz) 1 —1<z< 08
F(x)=< Fy(z) : =08 <2 <0.8
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Figure 2: Parts (a) f(x) = z (b)log scale
error of f(x) = sin(x)

Our method removes the Gibbs Phe-
nomenon and produces much better re-
sult for discontinuous/non-periodic ap-
proximations.

Window

Note that in this section, we use Fourier
Series complex form

N
Fy(@) = ) fre™
k=N
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When the coefficient f; is calculated us-
Ing quadrature, its called collocation

A | Np—1
Ik =~p Zo flaj)el — k)
]:

Using the following idea:

f(z) * w(z)

w(z)

N
Fy(z) = Y fre™
k=N

flz) =

We multiply the given data points of the
function f(x) to be reconstructed by a
continuous function on the domain |0, 27|
as done in [6].

2
wa — i Ww ) * f(I)B_kad:E
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Fy@) ~ oy 2 fie™
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The function w(x) must be a continuous
function satisfying the following condition

1:x €la,b] C|0,2n]
“’@“)—{e 2 ¢ [0 b)

We use ¢ to avoid division by 0. In prac-
tice, ¢ =~ eps, machine precision. On
0, 27], we use

z—1)2A
w(r) = e(_( =)

nstead of just cutting off the subinterval
a,b] C [0,27] as described in [1] this al-
ows us to nicely dissect the interval and
replace it with polynomial interpolation,
just as done in [6] to obtain better result
near the end of the interval.

Figure 3: w(x) for different lamdba (\ =
1,2,3,4,5)

The following figures are comparison be-
tween this new method and the straight
forward Fourier Series

Figure 4: Parts (a)f(x) = x with np =
201 and nc = 201 (b) the error plot, log
scale, f(x) = x with np = 201 and nc =
201 (¢)f(x) = x with np = 201 and nc =
201 (d) the error plot, log scale, f(x) = x
with np = 201 and nc = 201

Filtering |

n this section, we use the Fourier Series
complex form

There are two stages for providing infor-
mation about a function [1]:

Hybrid Trigonometric Polynomial Approximation

e Storage: store the expansion coeffi-
cients

e Retrieval: Sum up the expansion

For the case of the discontinuous prob-
lem, it is unwise to simply sum up the co-
efficients. This is because they contain
data polluted by the discontinuities and
this information will jeopardize the recon-
struction.

As described in [1, 2, 3, 7, 8], the coef-
ficient f,. decays at a faster rate for con-
tinuous/periodic problems than the cases
where Gibbs Phenomenon is present.

(a) (b)

Figure 5: Parts (a) coefficient of f(z) =
x (b) coefficient of f(x) = sin(x)

To ensure a faster rate of decay of f;
for discontinuous problems, we multiply
by a function o(+%) in the retrieval stage.
The requirement for filter functions can

be foundin [1, 5, 7, 8]

N
Fi(a) = Y ol fre™

k=—N

We explore different filtering function and
compare the result.

‘ Conclusion/Future Work |

Many of the techniques in [1, 2, 5, 7, 8]
requires knowing the location of the dis-
continuity for best result. We will look at
some edge detection techniques and in-
tegrate it with the different methods and
compare the results. Localization of the
discontinuity can be obtained from the
coefficients f;. [1]. We will explore this
idea to improve the hybrid method above
and analyze the error.

We also plan on projecting the Fourier re-
construction onto the Gegenbauer poly-
nomial as done in [?, 7]. We will also try

to reproject the hybrid method, where no
Gibbs Phenomenon exists, on the same
polynomial and see what happens.

We will study the Aliasing-Error and see
how each method affects it.

We plan on exploring Aliasing-Error and
Its convergence rate further in detail.
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